Search results for "probabilistic neural network"

showing 6 items of 6 documents

Pelagic species identification by using a PNN neural network and echo-sounder data

2017

For several years, a group of CNR researchers conducted acoustic surveys in the Sicily Channel to estimate the biomass of small pelagic species, their geographical distribution and their variations over time. The instrument used to carry out these surveys is the scientific echo-sounder, set for different frequencies. The processing of the back scattered signals in the volume of water under investigation determines the abundance of the species. These data are then correlated with the biological data of experimental catches, to attribute the composition of the various fish schools investigated. Of course, the recognition of the fish schools helps to produce very good results, that is very clo…

Probabilistic neural networkComputer Science (all)ClassificationPelagic species identificationTheoretical Computer Science
researchProduct

Identification of parameters of the Jiles-Atherton model by neural networks

2011

In this paper a procedure for the identification of the parameters of the Jiles–Atherton (JA) model is presented. The parameters of the JA model of a material are found by using a neural network trained by a collection of hysteresis curves, whose parameters are known. After a presentation of the Jiles–Atherton model, the neural network and the training procedure are described and the method is validated by using some numerical, as well as experimental, data.

Identification (information)HysteresisProbabilistic neural networkArtificial neural networkbusiness.industryComputer scienceMagnetic hysteresis neural nets physics computingJiles-Atherton modelGeneral Physics and AstronomyPattern recognitionArtificial intelligencebusiness
researchProduct

Evaluating the performance of artificial neural networks for the classification of freshwater benthic macroinvertebrates

2014

Abstract Macroinvertebrates form an important functional component of aquatic ecosystems. Their ability to indicate various types of anthropogenic stressors is widely recognized which has made them an integral component of freshwater biomonitoring. The use of macroinvertebrates in biomonitoring is dependent on manual taxa identification which is currently a time-consuming and cost-intensive process conducted by highly trained taxonomical experts. Automated taxa identification of macroinvertebrates is a relatively recent research development. Previous studies have displayed great potential for solutions to this demanding data mining application. In this research we have a collection of 1350 …

ta113Radial basis function networkEcologyArtificial neural networkComputer sciencebusiness.industryApplied MathematicsEcological Modelingta1172PerceptronMachine learningcomputer.software_genreBackpropagationComputer Science ApplicationsProbabilistic neural networkIdentification (information)Computational Theory and MathematicsModeling and SimulationMultilayer perceptronConjugate gradient methodta1181Artificial intelligencebusinesscomputerEcology Evolution Behavior and SystematicsEcological Informatics
researchProduct

The Random Neural Network Model for the On-line Multicast Problem

2005

In this paper we propose the adoption of the Random Neural Network Model for the solution of the dynamic version of the Steiner Tree Problem in Networks (SPN). The Random Neural Network (RNN) is adopted as a heuristic capable of improving solutions achieved by previously proposed dynamic algorithms. We adapt the RNN model in order to map the network characteristics during a multicast transmission. The proposed methodology is validated by means of extensive experiments.

Multicast transmissionMulticastHeuristic (computer science)Computer sciencebusiness.industryDistributed computingComputer Science::Neural and Evolutionary ComputationSteiner tree problemRandom neural networksymbols.namesakeProbabilistic neural networkLine (geometry)symbolsArtificial intelligenceStochastic neural networkbusiness
researchProduct

Neural networks for animal science applications: Two case studies

2006

Abstract Artificial neural networks have shown to be a powerful tool for system modelling in a wide range of applications. In this paper, we focus on neural network applications to intelligent data analysis in the field of animal science. Two classical applications of neural networks are proposed: time series prediction and clustering. The first task is related to the prediction of weekly milk production in goat flocks, which includes a knowledge discovery stage in order to analyse the relative relevance of the different variables. The second task is the clustering of goat flocks; it is used to analyse different livestock surveys by using self-organizing maps and the adaptive resonance theo…

Self-organizing mapArtificial neural networkbusiness.industryComputer scienceTime delay neural networkDeep learningGeneral EngineeringMachine learningcomputer.software_genreComputer Science ApplicationsProbabilistic neural networkAdaptive resonance theoryAnimal scienceArtificial IntelligenceMultilayer perceptronCellular neural networkArtificial intelligenceData miningTypes of artificial neural networksbusinessCluster analysiscomputerNervous system network modelsExpert Systems with Applications
researchProduct

Bacteria classification using minimal absent words

2017

Bacteria classification has been deeply investigated with different tools for many purposes, such as early diagnosis, metagenomics, phylogenetics. Classification methods based on ribosomal DNA sequences are considered a reference in this area. We present a new classificatier for bacteria species based on a dissimilarity measure of purely combinatorial nature. This measure is based on the notion of Minimal Absent Words, a combinatorial definition that recently found applications in bioinformatics. We can therefore incorporate this measure into a probabilistic neural network in order to classify bacteria species. Our approach is motivated by the fact that there is a vast literature on the com…

0301 basic medicinesupervised classificationRelation (database)Computer science0102 computer and information sciences01 natural sciencesMeasure (mathematics)03 medical and health sciencesProbabilistic neural networkcombinatorics on wordsprobabilistic neural networkminimal absent wordlcsh:R5-920Settore INF/01 - Informaticabusiness.industryBacterial taxonomyPattern recognitionbacteria classificationGeneral MedicineCombinatorics on words030104 developmental biology010201 computation theory & mathematicsMetagenomicsClassification methodsArtificial intelligencebusinesslcsh:Medicine (General)AIMS Medical Science
researchProduct